THE NORMALIZED LAPLACIAN ESTRADA INDEX OF GRAPHS
نویسندگان
چکیده
منابع مشابه
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacia...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملNormalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملThe Estrada Index of Graphs
Let G be a simple n-vertex graph whose eigenvalues are λ1, . . . , λn. The Estrada index of G is defined as EE(G) = ∑n i=1 e λi . The importance of this topological index extends much further than just pure graph theory. For example, it has been used to quantify the degree of folding of proteins and to measure centrality of complex networks. The talk aims to give an introduction to the Estrada ...
متن کاملBounds of distance Estrada index of graphs
Let λ1, λ2, · · · , λn be the eigenvalues of the distance matrix of a connected graph G. The distance Estrada index of G is defined as DEE(G) = ∑ n i=1 ei . In this note, we present new lower and upper bounds for DEE(G). In addition, a Nordhaus-Gaddum type inequality for DEE(G) is given. MSC 2010: 05C12, 15A42.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of applied mathematics & informatics
سال: 2014
ISSN: 1598-5857
DOI: 10.14317/jami.2014.227